High-utility sequential pattern mining (HUSPM) has emerged as an important topic due to its wide application and considerable popularity. However, due to the combinatorial explosion of the search space when the HUSPM problem encounters a low utility threshold or large-scale data, it may be time-consuming and memory-costly to address the HUSPM problem. Several algorithms have been proposed for addressing this problem, but they still cost a lot in terms of running time and memory usage. In this paper, to further solve this problem efficiently, we design a compact structure called sequence projection (seqPro) and propose an efficient algorithm, namely discovering high-utility sequential patterns with the seqPro structure (HUSP-SP). HUSP-SP utilizes the compact seq-array to store the necessary information in a sequence database. The seqPro structure is designed to efficiently calculate candidate patterns' utilities and upper bound values. Furthermore, a new upper bound on utility, namely tighter reduced sequence utility (TRSU) and two pruning strategies in search space, are utilized to improve the mining performance of HUSP-SP. Experimental results on both synthetic and real-life datasets show that HUSP-SP can significantly outperform the state-of-the-art algorithms in terms of running time, memory usage, search space pruning efficiency, and scalability.
translated by 谷歌翻译
高效用顺序模式采矿(HUSPM)是具有许多真实世界应用的知识发现和数据分析中的重要活动。在某些情况下,HUSPM无法提供出色的措施来预测会发生什么。高效用顺序规则挖掘(HUSRM)发现了高实用性和高置信顺序规则,从而使其可以解决HUSPM中的问题。所有现有的HUSRM算法旨在找到与现实不一致的,可能会产生假的HUSRS的高级序列顺序规则(HUSRS)。因此,在本文中,我们制定了高公用事业完全订购的顺序规则挖掘的问题,并提出了两种称为petalsr和totalsr+的新型算法,旨在识别所有高实用性完全订购的顺序规则(HTSRS)。 TotalSR创建了一个实用表,该表可以有效地计算前提支持和一个效用前缀总和列表,该列表可以计算序列中O(1)时间中的剩余实用程序。我们还引入了左侧的扩展策略,该策略可以利用反单调性属性来使用信心修剪策略。 TotalSr还可以在实用程序上限的修剪策略的帮助下大大减少搜索空间,从而避免更加有意义的计算。此外,TotalSr+使用辅助前期记录表来更有效地发现HTSR。最后,在真实和合成数据集上都有许多实验结果,表明topalsR比较少的修剪策略的算法要高得多,并且在运行时间和可伸缩性方面,topalsr+效率更高。
translated by 谷歌翻译
域的概括(DG)旨在在几个源域上学习一个模型,希望该模型能够很好地推广到看不见的目标域。域之间的分布移位包含协变量和条件偏移,模型都必须能够处理以获得更好的推广性。在本文中,提出了一种新颖的DG方法来处理通过视觉对齐和不确定性引导信仰集合(VAUE)的分布转移。具体而言,对于协变性移位,视觉对齐模块的设计旨在使图像样式的分布与常见的经验高斯分布对齐,以便可以在视觉空间中消除协变量移位。对于有条件的转变,我们基于主观逻辑和Dempster-Shafer理论采用了不确定性引导的信念集成策略。给定测试样品的条件分布是通过源域的动态组合估计的。进行了全面的实验,以证明在四个广泛使用的数据集上,即办公室,VLCS,TerrainCognita和PACS上提出的方法的出色性能。
translated by 谷歌翻译
时间动作定位(TAL)旨在预测未修剪视频(即开始和结束时间)中动作实例的动作类别和时间边界。通常在大多数现有作品中都采用了完全监督的解决方案,并被证明是有效的。这些解决方案中的实际瓶颈之一是所需的大量标记培训数据。为了降低昂贵的人类标签成本,本文着重于很少调查但实用的任务,称为半监督TAL,并提出了一种有效的主动学习方法,名为Al-Stal。我们利用四个步骤来积极选择具有很高信息性的视频样本,并培训本地化模型,名为\ emph {火车,查询,注释,附加}。考虑定位模型的不确定性的两个评分函数配备了ALSTAL,从而促进了视频样本等级和选择。一个人将预测标签分布的熵作为不确定性的度量,称为时间提案熵(TPE)。另一个引入了基于相邻行动建议之间的共同信息的新指标,并评估视频样本的信息性,称为时间上下文不一致(TCI)。为了验证拟议方法的有效性,我们在两个基准数据集Thumos'14和ActivityNet 1.3上进行了广泛的实验。实验结果表明,与完全监督的学习相比,AL-Stal的表现优于现有竞争对手,并实现令人满意的表现。
translated by 谷歌翻译
在小组活动识别中,层次结构框架被广泛采用以表示个人及其相应小组之间的关系,并实现了有希望的绩效。但是,现有方法在此框架中仅采用了最大/平均池,这忽略了不同个体对小组活动识别的不同贡献。在本文中,我们提出了一种新的上下文合并方案,名为Ascentive Pooling,该方案可以从个人动作到小组活动的加权信息过渡。通过利用注意机制,细心的合并是可解释的,并且能够将成员环境嵌入现有的层次模型中。为了验证拟议方案的有效性,设计了两种特定的专注合并方法,即全球细心合并(GAP)和分层的细心池(HAP)。差距奖励对小组活动意义重大的个体,而HAP通过引入亚组结构进一步考虑了层次结构。基准数据集上的实验结果表明,我们的建议在基线之外取得了显着优势,并且与最先进的方法相当。
translated by 谷歌翻译
基于信息瓶颈(IB)的多视图学习提供了一种信息理论原则,用于寻找异质数据描述中包含的共享信息。但是,它的巨大成功通常归因于估计网络变得复杂时棘手的多元互助信息。此外,表示折衷的表示,{\ it},预测压缩和足够的一致性权衡,使IB难以同时满足这两个要求。在本文中,我们设计了几种变分信息瓶颈,以利用两个关键特征({\ it,即},充分性和一致性)用于多视图表示学习。具体而言,我们提出了一种多视图变量蒸馏(MV $^2 $ d)策略,以通过给出观点的任意输入,但没有明确估算它,从而为拟合MI提供了可扩展,灵活和分析的解决方案。在严格的理论保证下,我们的方法使IB能够掌握观测和语义标签之间的内在相关性,从而自然产生预测性和紧凑的表示。同样,我们的信息理论约束可以通过消除任务 - 求核和特定信息的信息来有效地中和对异质数据的敏感性,从而阻止在多种视图情况下两种权衡。为了验证理论上的策略,我们将方法应用于三种不同应用下的各种基准。广泛的定量和定性实验证明了我们对最新方法的方法的有效性。
translated by 谷歌翻译
由于多源信息集成的能力,多视图聚类吸引了很多关注。尽管在过去几十年中已经提出了许多高级方法,但其中大多数通常忽略了弱监督信息的重要性,并且无法保留多种视图的特征属性,从而导致聚类性能不令人满意。为了解决这些问题,在本文中,我们提出了一种新颖的深度观看半监督聚类(DMSC)方法,该方法在网络填充过程中共同优化了三种损失,包括多视图集群损失,半监督的成对约束损失损失和多个自动编码器重建损失。具体而言,基于KL差异的多视图聚类损失被施加在多视图数据的共同表示上,以同时执行异质特征优化,多视图加权和聚类预测。然后,我们通过创新建议将成对约束集成到多视图聚类的过程中,通过执行所学到的必须链接样本的多视图表示(不能链接样本)是相似的(不同的),以便形成的聚类结构可以可以更可信。此外,与现有的竞争对手不同,该竞争对手仅保留网络填充期间每个异质分支的编码器,我们进一步建议调整完整的自动编码器框架,其中包含编码器和解码器。通过这种方式,可以缓解特定视图和视图共享特征空间的严重腐败问题,从而使整个培训程序更加稳定。通过在八个流行图像数据集上进行的全面实验,我们证明了我们提出的方法的性能要比最先进的多视图和单视竞争对手更好。
translated by 谷歌翻译
ROUGE is a standard automatic evaluation metric based on n-grams for sequence-to-sequence tasks, while cross-entropy loss is an essential objective of neural network language model that optimizes at a unigram level. We present differentiable n-gram objectives, attempting to alleviate the discrepancy between training criterion and evaluating criterion. The objective maximizes the probabilistic weight of matched sub-sequences, and the novelty of our work is the objective weights the matched sub-sequences equally and does not ceil the number of matched sub-sequences by the ground truth count of n-grams in reference sequence. We jointly optimize cross-entropy loss and the proposed objective, providing decent ROUGE score enhancement over abstractive summarization dataset CNN/DM and XSum, outperforming alternative n-gram objectives.
translated by 谷歌翻译
内核主成分分析(KPCA)是一种公认​​的非线性维度减少方法,已广泛用于非线性故障检测任务。作为基于内核的基于核心的方法,KPCA继承了两个主要问题。首先,通常盲目地选择内核函数的形式和参数,根据试验和误差来盲目地选择。因此,在不适当的选择情况下可能存在严重的性能下降。其次,在在线监测阶段,KPCA具有多大的计算负担和实时性能差,因为内核方法需要利用所有离线训练数据。在这项工作中,为了处理两个缺点,提出了一种可学习的传统KPCA的更快实现。核心思想是使用新颖的非线性DAE-FE(基于深度AutoEncoder的特征提取)框架来参数化所有可行的内核函数,并详细提出DAE-PCA(基于深度AutoEncoder的主成分分析)方法。证明所提出的DAE-PCA方法等同于KPCA,但在根据输入的自动搜索最合适的非线性高维空间方面具有更多优势。此外,与传统KPCA相比,在线计算效率提高了大约100次。与田纳西州伊斯特曼(TE)的过程基准,说明了所提出的方法的有效性和优越性。
translated by 谷歌翻译
视频时刻检索旨在搜索与给定语言查询最相关的那一刻。然而,该社区中的大多数现有方法通常需要季节边界注释,这昂贵且耗时地标记。因此,最近仅通过使用粗略视频级标签来提出弱监督的方法。尽管有效,但这些方法通常是独立处理候选人的候选人,同时忽略了不同时间尺度中候选者之间的自然时间依赖性的关键问题。要应对这个问题,我们提出了一种多尺度的2D表示学习方法,用于弱监督视频时刻检索。具体地,我们首先构造每个时间刻度的二维图以捕获候选者之间的时间依赖性。该地图中的两个维度表示这些候选人的开始和结束时间点。然后,我们使用学习卷积神经网络从每个刻度变化的地图中选择Top-K候选。通过新设计的时刻评估模块,我们获得所选候选人的对齐分数。最后,标题和语言查询之间的相似性被用作进一步培训候选者选择器的监督。两个基准数据集Charades-STA和ActivityNet标题的实验表明,我们的方法能够实现最先进的结果。
translated by 谷歌翻译